A rough membership neural network approach for fault classification in transmission lines ¬リニ
نویسندگان
چکیده
Objective: This paper presents a new approach for fault classification in extra high voltage (EHV) transmission line using a rough membership neural network (RMNN) classifier. Methods:Wavelet transform is used for the decomposition of measured current signals and for extraction of ten significant time–frequency domain features (TFDF), as well as three distinctive time domain features (TDF) particularly in terms of getting better classification performance. After extracting useful features from the measured signals, a decision of fault type of a transmission line is carried out using ten RMNN classifiers. Furthermore, to reduce the training times of the neural network, the rough neurons are used as input layer neurons, and the fuzzy neurons are utilized in hidden and output layer in each RMNN. And the Back Propagation (BP) algorithm is employed for determining the optimal connection weights between neurons of the different layers in the RMNN. Results and Conclusions: To verify the effectiveness of the proposed scheme, extensive simulations have been carried out under different fault conditions with wide variations in fault type, fault resistance, fault location and fault inception angle. Simulations results show that the proposed scheme is faster and more accurate than the back-propagation neural network (BPNN), and it is proved to be a robust classifier for digital protection. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Accurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network
Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...
متن کاملA Novel Fault Detection and Classification Approach in Transmission Lines Based on Statistical Patterns
Symmetrical nature of mean of electrical signals during normal operating conditions is used in the fault detection task for dependable, robust, and simple fault detector implementation is presented in this work. Every fourth cycle of the instantaneous current signal, the mean is computed and carried into the next cycle to discover nonlinearities in the signal. A fault detection task is complete...
متن کاملDeveloping A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults
Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...
متن کاملIdentification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملInternational Journal of Smart Grid and Clean Energy Detection and classification of faults on 220 KV transmission line using wavelet transform and neural network
This paper presents a discrete wavelet transform and neural network approach to fault detection and classification in transmission lines. The detection and classification is carried out by using energy of the detail coefficients of the phase signals, used as input to neural network to classify the faults on transmission lines. Neural network perform well when faced with different fault conditio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016